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For the horizontal generating functions Pn (z)=�n
k=1 S(n, k) zk of the Stirling

numbers of the second kind, a weak asymptotic is established, as n � �. The
distribution function Fn of the zeros of Qn (z)=Pn (nz) is investigated and by using
the Stieltjes transformation, the limit of Fn in the sense of weak convergence is
deduced. � 2001 Academic Press
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1. INTRODUCTION AND SUMMARY

In this paper we deduce the asymptotic distribution function of the zeros
for the horizontal generating function of the Stirling numbers of the second
kind S(n, k), which are defined by the following double generating function
(see [2, p. 50]):

exp[z(eu&1)]=: 1+ :
1�k�n<�

S(n, k)
un

n !
zk, z, u # C. (1.1)

The horizontal generating functions Pn (z) are the coefficients of the follow-
ing power series:

exp[z(eu&1)]=: 1+ :
�

n=1

Pn (z)
n !

un, z, u # C.

Concerning the zeros of Pn there is one result: The zeros are simple, real,
and not greater than 0 (see [2, p. 271]). In [5] two asymptotic expansions
for Qn (z) := Pn (nz) are deduced by means of the saddle point method.
With 8: C"[&e, 0] � A _ 1+ , which maps C"[&e, 0] conformally on
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A :=[w # C"[0] : w>&1 or w=a+ib, a>&b cot b, b # (&?, ?)"[0]],
and (&e, 0) one-one on 1+ :=[w # �A : I(w)>0], the following results
are obtained:

(i) With , # (0, ?) there is the oscillating asymptotics

Qn (x(,))=kn (,) \sin \n \?&,+
sin2 ,

, ++'(,)++O \1
n++

with kn (,)>0, '(,) bounded by ?
2 and ?, x(,) # (&e, 0), x(,) w(,) ew(,)

=1,

x(,)=&
sin ,

,
e, cot , and 8(x(,))=w(,) :=

,
sin ,

ei(?&,). (1.2)

(ii) With z # C"[&e, 0], w=8(z) and zwew=1, it holds that

Qn (z)=
n !

- 2?n

1
wn exp {n

w
(1&e&w)= (1+w)&1�2 \1+O \1

n++ ,

where the O-term holds uniformly on every compact subset of C"[&e, 0].
Examining these results, we can presume that nearly all zeros of Qn are in
[&e, 0], because for sufficiently large n the asymptotic in (ii) is not equal
to 0. Therefore, we discuss the position of the zeros by investigating the
distribution function of the zeros for Qn (z):

Fn (!) :=
1
n

Nn (!), Nn (!) :=|[x�! : Qn (x)=0]|, n # N.

By using the Stieltjes transformation, we get a weak asymptotic; i.e., we
prove the weak convergence of the sequence Fn to a distribution function
F of the following type,

0, x� &e

F(x)={1+
1
? \J \1

w+&ph(w)+ , x # (&e, 0)

1, x�0,

with ph(w) # (0, ?), w # �A, xwew=1. With the above parametrization
(1.2), it holds further that

F \&
sin ,

,
e, cot ,+=

1
? \,&

sin2 ,
, + , , # (0, ?).
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2. WEAK ASYMPTOTICS

To investigate the position of the zeros of Qn , which are all simple, real,
and not greater than 0 (see [2, p. 271]), we define

Qn (z) = nn `
n

&=1

(z&xn, &)

with &�<xn, 1< } } } <xn, n=0, n # N,

Nn (!) :=|[& # [1, ..., n]: xn, &�!] |, n # N, and

Fn (!) :=
1
n

Nn (!), n # N.

For computing the limit probability distribution F in the sense of weak
convergence, we observe the logarithmic derivative

hFn
(z) :=

1
n

Q$n (z)
Qn (z)

=
1
n

:
n

&=1

1
z&xn, &

=|
0

&�

1
z&t

dFn (t), z # C"(&�, 0], (2.1)

which represents the Stieltjes transform of Fn . The following theorem
supplies the limit of this sequence.

Theorem 2.1. With the above mentioned notations, hFn
and Fn hold:

(i) hFn
(z) converges to h(z) :=e8(z)&1 (compactly) on C"[&e, 0].

(ii) The sequence of distributions Fn converges weakly to a distribution
F; i.e., if F is continuous at ! # R, then limn � � Fn (!)=F(!) and:

|
0

&�

1
z&t

dF(t)=|
0

&e

1
z&t

dF(t)=h(z), z # C"[&e, 0].

Proof. (i) Let K/C"[&e, 0] be compact, z # K, and

Gn (z) :=
n !

- 2?n

1
8(z)n exp {n \ 1

8(z)
&z+= (1+8(z))&1�2.
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Because Qn �Gn converges uniformly to 1 on K (see [5, Theorem 3.3]), it
follows from (2.1) that

lim
n � �

hFn
(z)= lim

n � �

1
n

G$n (z)
Gn (z)

= lim
n � �

1
n \&n

8$(z)
8(z)

&n \8$(z)
8(z)2+1+

&
1
2

(1+8(z))&1 8$(z)+
=&

8$(z)
8(z)

&
8$(z)
8(z)2&1.

The uniform convergence follows from the compact convergence in
[5, Theorem 3.3] and because 8 and 8$ are bounded on K. Let 9 be
the inverse function of 8, 9(w)=(wew)&1, w # A (see [5, Lemma 2.3]):
then we obtain that 8$(z)=(9$(8(z)))&1, 9$(w)=e&w (&w&2&w&1),
and further that

lim
n � �

hFn
(z)=

e,(z)

&8(z)&2&8(z)&1 \&
1

8(z)
&

1
8(z)2+&1

=
e,(z)

1+8(z)
(8(z)+1)&1=e,(z)&1=h(z). K

(ii) By using the theorem of Grommer and Hamburger (see
[10, p. 175]) and Lemma 1 in [6, p. 383], the proof is completed if
R(iyh(iy)) � 1 for 0< y � �. This follows from [5], Lemma 2.3:

lim
z � �

zh(z)= lim
w � 0

9(w) h(9(w))= lim
w � 0

1
w

e&w (ew&1)=1.

Since h is analytic on C"[&e, 0], the lower boundary in the integral
representation &� can be replaced by &e. K

Now we focus on determining the distribution F. To use some well-
known results concerning the inversion of Stieltjes transforms, we make the
following assumption:

F # C1 (&e, 0), F $(t)= f (t), t # (&e, 0). (2.2)

Thereby, we can apply an inversion formula for the Stieltjes transform

h(z)=e8(z)&1=|
0

&e

f (t)
z&t

dt, z # C"[&e, 0]. (2.3)
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Theorem 2.2 The function f with the Stieltjes transform h and the dis-
tribution F hold:1

(i) f (t)=
1
?

I(exp(8(t))), t # (&e, 0),

0, x� &e

(ii) F(x)={1+
1
? \I \ 1

8(x)+&ph(8(x))+ , x # (&e, 0), ph(8(x)) # (0, ?)

1, x�0,

(iii) F(x(,))=
1
? \,&

sin2 ,
, + ,

x(,)=&
sin ,

,
e, cot ,, , # (0, ?).

Proof. (i) Let t be in (&e, 0); then by using Theorem 14.1 in [11,
p. 126]:

f (t)= lim
y � 0+

h(t&iy)&h(t+iy)
2?i

. (2.4)

To compute h(t&i0) let z � R, R(z) # (&e, 0), zwew=1, w=x+iy, y{0,
and w # A; then we have:

I(z)=I \ 1
x+iy

e&x&iy+=I \ x&iy
x2+ y2 e&xe&iy+

=
e&x

x2+ y2 (&x sin y& y cos y)

=
e&x

x2+ y2 sin y(&x& y cot y).

So by the definition of A we can conclude that I(z) is less than or greater
than 0 if and only if y is greater than or less than 0, respectively. Thus (2.4)
becomes:

f (t)=
1

2?i
(exp(8(t))&exp(8(t)))=

1
?

I(exp(8(t))).
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Because f has been determined by the help of (2.2) we still have to verify
that f complies with (2.3). That can be easily considered by the substitu-
tions t=9(w), w # 1+ , and t=9(w), w # 1& , and the use of the residue
theorem.

(ii) By Theorem 2.1 and (2.2) there is a c in [0, 1) satisfying:

F (x)={
0, x< &e

(2.5)

c, x=&e

c+|
x

&e
f (t) dt, x # (&e, 0)

1, x�0.

With x in (&e, 0) and t=9(w)=(wew)&1, it follows that

|
x

&e

1
?

I(exp(8(t))) dt=
1
?

I \|
8(x)

&1, w # 1+

ewe&w \&
1

w2&
1
w+ dw+

=
1
?

I \ 1
8(x)

+1&ln(8(x))+ln(&1)+
=1+

1
? \I \ 1

8(x)+&ph(8(x))+ ,

which has the limit 0 for x � &e+ and 1 for x � 0& . Hence, c must be
equal to 0 and the proof is completed.

(iii) Let 8 be in (0, ?); then due to (ii) and (1.2) we may write:

F(x(,))=1+
1
? \I \ 1

8(x(,))+&ph(8(x(,)))+
=1+

1
? \I \sin ,

,
e&i(?&,)+&ph \ ,

sin ,
ei(?&,)++

=1&
1
?

sin2 ,
,

&1+
,
?

=
1
? \,&

sin2 ,
, + . K

Besides the access to the density f with the help of the Stieltjes transform,
there is also the possibility of using an inversion formula for the Mellin
transform g(s) of f

*
(t) :=f (&t):

g(s) :=|
e

0
f
*

(t) ts&1 dt=|
0

&e
f (t)(&t)s&1 dt, R(s)>1. (2.6)

Indeed, that does not lead to the above mentioned form of f, but we can
obtain some interesting results by using this method.
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Theorem 2.3. Let x be in (&e, 0), R(s)>1 and ln(s&1)=ln |s&1|+
iph(s&1), ph(s&1) # (&?, ?), then:

(i) g(s)=
(s&1)(s&1)

1(s+1)
,

(ii) f (x)=
1

2?i |
c+i�

c&i�

(s&1)s&1

1(s+1)
(&x)&s ds, c>1,

(iii) f (x)=
1

&x?2 |
�

0

(&x)r

rr sin2 (?r)
1(r)
1&r

dr.

Proof. (i) To compute g(s) we observe that for |z|>e:

e8(z)&1=|
0

&e

f (t)
z&t

dt=
1
z |

0

&e
f (t) :

�

k=0
\t

z+
k

dt

= :
�

k=0

(&1)k

zk+1 |
e

0
f
*

(t) tk dt.

On the other hand we can develop e,(z)&1 into a Bu� rmann Lagrange
series (see [8, pp. 124�125]):

e8(z)&1= :
�

k=1

1
zk

1
k ! _

d k&1ex(e&x)k

dxk&1 &x=0

= :
�

k=0

(&1)k kk

(k+1)!
1

zk+1 .

By the identity theorem for Laurent series, an identity theorem for analytic
functions (Theorem 5.81 in [9, p. 186]), and by analytic continuation the
claimed form of g(s) is proved.

(ii) By using an inversion formula for g(s) (see [4, p. 409]) it follows
that

f (x)= f
*

(&x)=
1

2?i |
c+i�

c&i�

(s&1)s&1

1(s+1)
(&x)&s ds, c>1. (2.7)

(iii) To prove (iii) we look at a modified path of integration (Fig. 1)
with c~ =c&1, d>0, R :=|c~ &id |, :& :=ph(c~ &id) # (&?

2 , 0), :+=ph(c~ +id )
=&:& , and:

#1 :=[s # C : s=c~ +iy, y # [&d, d]],

#2 :=[s # C : s=Re&i�, � # [:+ , ?]],

#3 :=[s # C : s=re&i?, s # [&R, &1�R]],

#4 :=[s # C : s=R&1ei�, � # [&?, ?]],

#5 :=[s # C : s=rei?, r # [1�R, R]],

#6 :=[s # C : s=Rei(?&�), � # [0, ?&:+]].
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FIG. 1. The path of integration for Theorem 2.3(iii).

By Cauchy's theorem and analytic continuation of g it follows that

|
c+i�

c&i�
g(s)(&x)&s ds

= lim
d � � |

#2+#3+#4+#5+#6

g(s+1)(&x)&s&1 ds. (2.8)

For investigating �#2
let s=Re&i�, R>1, � # [:+ , ?]; then by the

functional equation of the Gamma function (see [1, p. 48]) and Stirling's
formula (see [7, p. 294]) it holds that

g(s+1)(&x)&s&1

=
ss

1(s+2)
(&x)&s&1

=
ss

s+1
sin(&?s)

?
1(&s)(&x)&s&1

=
ss

s+1
sin(&?s)

?
es (&s)&s � 2?

&s
(&x)&s&1 \1+O \ 1

&s++
=

es
- 2

(&x)s+1 (s+1) - R?

e&i?s&ei?s

2i

_e&(1�2) i(&�+?)es ln(R)&is�e&s ln(R)&is(&�+?) \1+O \ 1
&s++

=\ e
&x+

s &1

&x(s+1) - 2?s
(e&2i?s&1) \1+O \ 1

&s++ , d � �.
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Since I(s)�0 and R(s)�c~ , �#2
is satisfying:

} |#2

g(s+1)(&x)&s&1 ds }
�\ e

&x+
c~ 1

|x| (R&1) - 2?R
2?R \1+O \1

R++� 0, d � �. (2.9)

By analogous argumentation it follows that

} |#6

g(s+1)(&x)&s&1 ds }� 0, d � �. (2.10)

To estimate �#4
let s=R&1ei�, � # [&?, ?]. Since (1(s+2))&1 � 1 and

|ss| � 1 as d � �, it follows that

} |#4

g(s+1)(&x)&s&1 ds }�max
s # #4 }

ss (&x)&s&1

1(s+2) } 2?
R

� 0, (2.11)

as d � �. Altogether, we conclude from (2.7), (2.8), (2.9), (2.10), and
(2.11) with the substitutions s=re&i? and s=re i?:

f (x)=
1

2?i \|
0

�
g(re&i?+1)(&x)&re&i?&1 e&i? dr

+|
�

0
g(re i?+1)(&x)&re i?&1 ei? dr+

=
1

&2?ix |
�

0

(&x)r

1(2&r)
((re&i?)re& i?

&(re i?)rei?
) dr

=
1

&2?ix |
�

0

(&x)r

1(2&r)
(e&r ln r+ir?&e&r ln r&ir?) dr

=
1

&?x |
�

0

(&x)r

(1&r) 1(1&r)
sin(r?)

rr dr

=
1

?(&x) |
�

0

(&x)r

1&r
1(r) sin(r?)

?
sin(r?)

rr dr

=
1

?2 (&x) |
�

0

(&x)r

rr sin2 (r?)
1(r)
1&r

dr. K

Finally, we investigate the rise of f and its asymptotic behavior in the
points &e and 0.
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Theorem 2.4. Let x be in (&e, 0); then:

(i) f (x)t(- 2�(e3�2?))(e+x)1�2, as x � &e+ ,

(ii) f (x)tln&2 (&x)(&x)&1, as x � 0& ,

(iii) f is increasing strictly on (&e, 0).

Proof. (i) By Theorem 2.3(ii) and with u :=1&ln(&x) we get:

f (x)=
1

2?i |
c+i�

c&i�

(s&1)s&1

1(s+1)
e&sesu ds.

Moreover, with Stirling's formula (see [7, p. 294]), as s � �, it follows
that

(s&1)s&1

1(s+1)
e&s=

(s&1)s&1

s(s&1) 1(s&1)
e&s

t
(s&1)s&1 e&s

s(s&1)(s&1)s&1 e&(s&1) �s&1
2?

t
s&3�2

e - 2?
.

Thus the conditions of an Abel theorem for inversions of Laplace trans-
forms (Theorem 3 in [4, p. 503]) are fulfilled and as u � 0+ and x � &e+

respectively f holds:

f (x)t
1

e - 2?

u1�2

1( 3
2)

=
- 2
e?

(1&ln(&x))1�2

=
- 2
e? \&ln \1&

x+e
e ++

1�2

t
- 2
e? \x+e

e +
1�2

=
- 2
e3�2?

(x+e)1�2.

(ii) Using Theorem 2.3(iii), we have f (x)= f� (&ln(&x))�&x, with

f� (&ln(&x)) :=|
�

0
e&(&ln(&x)) r sin2 (?r)

?2rr

1(r)
1&r

dr.

Since

sin2 (?r)
?2rr

1(r)
1&r

=
sin(?r)

?rr

1
1(2&r)

tr, as r � 0+ ,
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we can apply an Abel theorem for Laplace integrals (Theorem 33.3 in [3,
p. 241]) and obtain the asymptotic behavior of f� as &ln(&x) � �,

f� (&ln(&x))t
1(1+1)

(&ln(&x))2 , as &ln(&x) � �,

and that means f (x)tln&2 (&x)(&x)&1, as x � 0& .

(iii) Using Theorem 2.3 (iii) and a theorem on the derivative of
Laplace integrals (Theorem 6.1 in [3, p. 37]), it follows that

f $(x)=
1

(&x)2 ?2 |
�

0

(&x)r

rr sin2 (?r) 1(r) dr,

which is greater than 0 for all x in (&e, 0), and thus the proof is com-
pleted. K
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